如何提高频谱仪的幅度测量精度
扫频式超外差频谱仪通过混频器把输入信号变换到中频(IF),在中频进行放大、滤波和检波处理。预选滤波器(有时是低通滤波器)主要用于滤除镜像频率的信号,频谱仪屏幕上显示的参考电平和中频放大器的增益有关,该放大器只是调节信号在屏幕上显示的垂直位置,不影响输入衰减器端的电平。屏幕的横轴是频率,纵轴是测得的信号电平,一般以线形的电压Volt或对数形式的dB表示。
频谱仪的幅度精确度通常有绝对精度和相对精度两种。绝对精度指的是信号的功率电平精度,单位为dBm;而相对精度指的是测量两个信号之间差值的精度,其中的一个信号作为另一个的参考,例如测量谐波信号的时候,一般测量谐波和基波的功率比。通过测量一个幅度和频率非常准确的校准源,以上两种精度都可以得到提高。
频谱仪中前端的信号处理元件如放大器、滤波器和混频器都是幅度测量误差的来源。在许多频谱仪设计中,采用更好的元件可以提高精度。安捷伦科技的高性能频谱仪PSA系列(如图2),采用了一整套数字中频滤波器,可以避免模拟中频滤波器的幅度变化。但是仅仅提高整个信号处理链路中的部分元件,还不足以消除所有的误差来源,更好的了解频谱仪各个模块之间的相互作用,有助于减小误差,提高幅度测量精度。
幅度测量的精度为什么这么重要呢?例如有些通讯标准要求调制的载波功率不能超过某个特定的值,这对绝对精度提出了要求;过多的谐波或杂散信号会对其他的通信系统产生干扰,这对相对精度也提出了要求,这些系统中的放大器必须满足特定的线形度要求,以保证不会产生较高的谐波和杂散信号,对于这些系统中的滤波器必须同时测量通带和阻带特性。
频谱各个元件之间的相互作用是误差的来源之一。表1列举了部分幅度测量误差的来源。大多数仪器|仪表厂商在其产品的指标中都会同时注明绝对和相对不确定度。因为相对不确定度对两种测量都有影响,因此本文将重点讨论相对不确定度。
频谱仪的频率响应平坦度是幅度误差的主要来源之一。该指标描述的是相对幅度不确定度和频率的函数关系,受输入衰减器、混频器、本振幅度和输入滤波器的频响平坦度的影响。频响的不确定度一般有绝对和相对两种表示方法。相对不确定度描述的是整个频率范围内,相对于中央频点的最大可能幅度不确定度,一般比相同频段的绝对不确定度要小。但是为了得到某个带内相对幅度测量的频响不确定度,相对频响指标值还要乘二,以反映整个带内频响的峰-峰值,这会导致其通常比绝对频响指标还要高。
频谱仪通常采用YIG调谐滤波器作为预选滤波器,YIG滤波器也会影响频谱仪的频响特性。该滤波器必须精确的调谐和对准,以避免引入额外的频响变化,由于本振的扫描速度有限,因此YIG滤波器还要加上一些延迟和补偿,以保证其中心频率和本振同步。频谱仪的前端通常还加一个低通滤波器,在测量YIG预选器不能达到的低端频率的信号时(通常2GHz以下),该低通滤波器用于滤除高频信号。尽管该滤波器也会影响整体的频响特性,但是其影响比YIG滤波器小很多。
由于部分频谱仪采用谐波混频技术,仪器内部实际上有很多个混频频段,每个频段都有特定的频响,因此在各个频段之间切换的时候也会引入不确定度。例如PSA系列到26.5GHz的E4440A频谱仪,内部分五个混频频段,分别为:3 Hz 到3 GHz, 2.85到 6.6 GHz, 6.2到13.2 GHz, 12.8到19.2 GHz, 18.7到26.5 GHz。当设置的频率跨度(Span)超过两个混频频段时,仪器会自动切换内部混频频段,从而引入幅度不确定度。当测量两个处于不同混频频段的信号的相对值时,总的不确定度等于两个频段的频响之和加上频带切换不确定度。如果指标中没有注明频带切换的不确定度,可以用以校准源为参考的绝对频响参数,来确定各个频段的总测量不确定度(见表1)。
频谱仪中另一个不确定度的来源是量程的可信度。当测量两个位于不同垂直位置(量程)的信号时,不同量程的可信度就会影响结果。检波器和ADC的线性度、对数/线形放大器的线形度都会影响量程的可信度。对于大部分对数放大器而言,其线形度随着输入点评的降低而恶化。
对于幅度接近的两个信号,量程的不确定约为零点几dB,对于幅度相差很大的信号,这个不确定度可达2dB。典型的量程可信度指标为:±0.4 dB/4 dB其累积最大值±1.0 dB。其中±0.4 dB/4 dB这个指标对于幅度相近的信号适用,而累积指标对于幅度相差较大的信号适用。
当频谱仪要测量不同电平的信号时,其灵活度可以通过调节参考电平来实现,但是调节参考电平也会引入不确定度。参考电通和输入衰减器和中频增益有关,其范围可以从显示平均底噪(DANL)调节到其能承受的最大输入电平。调节参考电平实际上就是调节中频放大器的增益,中频放大器本身(和所有的放大器一样)其增益都会随着幅度和频率变化。因此测试过程中,任何参考电平的调节都会引入不确定度。测距仪测高仪·流量计·GPS·测厚仪·水准仪·平板仪·罗盘仪·绘图机·晒图机·
参考电平通常通过仪器内部的标准参考源(当然也可以用外部源)进行校准。和很多功率计内置的标准源类似,PSA系列频谱仪内置一个频率为50MHz,功率为-25dBm的标准源,其幅度精度为±0.24 dB(而ESA-E系列通用频谱仪的内置标准源的幅度和频率和PSA一样,但是精度为±0.34 dB)。因此当设置参考电平为-25dBm、衰减器为10dB的时候,频谱仪的测量精度最高,因为频谱仪参考电平相关参数就是在这个状态下进行校准的。
参考电平不确定度这个指标通常这样给出:如±0.3 dB 在-20 dBm,随着参考电平偏离-20dBm,这个指标会有一定增大。需要注意的是不同仪器的指标里对“参考电平不确定度”可能会用不同的名词。例如,安捷伦科技的8560系列便携式频谱仪指标中用“中频增益不确定度”这个词,而PSA系列则用“参考电平精度”这个词。
由于射频微波衰减器的衰减值会随频率变化(有时甚至随温度变化),因此步进衰减器的精度也是频率的函数。另外,参考电平校准时的衰减器设置如果和实际测量的设置不一样,也会引入不确定度。大多数衰减器的精度都是随着频率的升高而恶化的,衰减器切换的典型不确定度为±1 dB。
由于模拟滤波器的频响不是很理想,不同带宽的滤波器之间的输出幅度特性会有较大的差别。因此测量时转换分辨率带宽滤波器也会引入不确定度,特别是使用模拟滤波器时。而数字滤波器在这方面的表现就很好,但是数字滤波器的实现成本更高,因此在ESA系列中档频谱仪中,数字中频滤波器只做到300Hz,更高带宽的滤波器模拟的。
而高端的PSA系列的中频处理部分则采用全数字设计,还包含FFT分析和数字是扫频接收机。该设计不但提高了幅度测量精度,而且还提高了扫描速度。
改变屏幕显示每一格的尺度也会影响测量精度。例如把每格10dB的尺度改为每格1dB,这时频谱仪的对数/线形放大器的特性会有变化,这也会引入不确定度。当然在测量中保持刻度不变,可以避免这种误差。典型的线形-对数转换不确定度在参考电平位置为±0.25 dB,但是如果频谱仪此时显示的是已经保存的轨迹,这个不确定度对测量就没有影响。
总的相对幅度测量不确定度受上述所有因素的叠加影响。有一些误差来源于改变设置,如果衰减器、分辨率带宽、参考电平等设置不变,相关的所有不确定度就可以排除,总的不确定度就可以减至最小。例如PSA系列频谱仪由于采用全数字分辨率带宽滤波器,因此在切换分辨率带宽时,不会引入额外的误差,其精度远比采用模拟滤波器的频谱仪高。
为了提高相对幅度测量的精度,最简单的方法是在测量的过程中不要改变设置:不要改变分辨率滤波器设置,但是像PSA这样采用全数字滤波器的,可以改变分辨率带宽滤波器;参考电平校准和实际测量时,保证采用同样的衰减器设置;测试过程中不要改变每一格的尺度。
连接频谱仪和被测件之间的信号传输网络会影响被测信号的特性,因此这些网络的特性也必须被补偿掉。通常采用频谱仪内置的幅度修正功能,加上测试信号源和功率计,可以测出该网络的频率响应特性,把测量的结果做成一个表格存在频谱仪内部,测量时用表格中的数据进行修正即可。对于某些测试中必须用的天线、电缆等附件,也可以用上述的办法进行补偿。并且仪器可以存储很多组数据,以应对不同的设置。
下面是一个典型的计算不确定度的例子,本例中被测信号的频率为1GHz,幅度为-20dBm。为了对比不同仪器的测试精度,选用了高端的PSA系列4440A和中端的ESA-E系列E4402A频谱仪。各项设置均相同:衰减器为10dB,频率跨度为20KHz,参考电平为-10dBm,扫描时间设为自动,分辨率带宽为10KHz,视频带宽为1KHz。环境温度为室温(+20 到 +30°C),E4440A PSA(数字中频滤波器)的标称绝对幅度不确定度为±0.24 dB,而ESA(模拟中频滤波器)的指标为±0.54 dB。上述的两个数字分别加上两款频谱仪的绝对频率响应,其和就是最坏情况下的不确定度。对于更高频率信号,特别是谐波测试时,由于仪器要切换内部混频频段,其不确定度会更大。
采用数字中频滤波器可以有效地提高频谱仪的测量精度。测量过程中,合理的仪器设置也可以保证测试的结果能满足仪器给出的最佳精度。